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We examine critically the issue of phase transitions in one-dimensional systems
with short range interactions. We begin by reviewing in detail the most famous
non-existence result, namely van Hove’s theorem, emphasizing its hypothesis
and subsequently its limited range of applicability. To further underscore this
point, we present several examples of one-dimensional short ranged models that
exhibit true, thermodynamic phase transitions, with increasing level of complex-
ity and closeness to reality. Thus having made clear the necessity for a result
broader than van Hove’s theorem, we set out to prove such a general non-exis-
tence theorem, widening largely the class of models known to be free of phase
transitions. The theorem is presented from a rigorous mathematical point of
view although examples of the framework corresponding to usual physical
systems are given along the way. We close the paper with a discussion in more
physical terms of the implications of this non-existence theorem.

KEY WORDS: Phase transitions; one-dimensional systems; short-range inter-
actions; transfer operators; rigorous results.

1. INTRODUCTION

One-dimensional (1D) systems are among the most important and fruitful
areas of research in Physics. This is due to the fact that such models are
generally much more amenable to analytical calculations than higher-
dimensional ones, while describing to a certain degree many problems of
actual physical relevance. Indeed, exact results for 1D systems have offered
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deep insights about very many phenomena which subsequently have led to
advances in much broader contexts. Remarkably, in spite of the large body
of knowledge already available about this class of problems, 1D systems
still are a continuous source of exciting new physics.*? This is so in spite
of the unjustifiable prejudices or careless generalizations that prevent
researchers from considering many 1D problems on the grounds of their
lack of interest. This has been the case, for instance, with Anderson
localization in 1D disordered systems: although all proofs in the literature
are model dependent, for almost thirty years it has been regarded as a
general dictum that any kind and amount of disorder will localize all elec-
tronic states in 1D. During this time, almost no researchers have studied
localization in 1D as the previous statement amount to consider it a case
closed. However, thanks to a few works carried out with critical attitude,
we now know that in the presence of short-ranged® or long-ranged cor-
related disorder® bands of extended states do exist. Subsequently, the
breakdown of the belief on the generality of 1D localization phenomena
has paved the way to most relevant results, such as, e.g., the dependence of
the transport properties of DNA on their information content (ref. 5; see
also a partial retraction that does not affect the DNA part of the paper in
ref. 6).

In this paper, we undertake the critique of another famous general
statement, namely that there cannot be phase transitions in 1D systems
with short range interactions. This assertion is practically never questioned
(see ref. 7 for a recent exception), even though no general proof of it has
ever been provided, an impossible task in view that counterexamples have
been given more than thirty years ago as we will see below. The influence
of this piece of received wisdom cannot be underestimated, and for the past
fifty years has become an almost unsurmountable barrier for any research
on 1D phase transitions. It is important then to remind the physics com-
munity of the limits of applicability of this result. To this end, we need to
make the statement rigorous for the widest possible class of models. In
doing so, (quasi) 1D physical systems exhibiting phase transitions will be
again available for a host of applications; in addition, the possibility of
using 1D models, often exactly solvable ones, to advantageously study
phase transitions will be reopened.

To carry out this program, we proceed along two complementary
directions. First, we review the existing results about non existence of phase
transitions in short-ranged 1D systems. To our knowledge, these amount to
a theorem proven by van Hove® for homogeneous fluid-like models, with
pairwise interactions with a hard core and a cutoff, and in the absence of
an external field, which was later generalized by Ruelle® to lattice models.
We note that the well known argument by Landau'®” about domain walls
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is heuristic and relies on approximate calculations; we will also comment
briefly on this below. We then discuss several 1D models proposed in the
past which exhibit true thermodynamic phase transitions; these models
have different degrees of complexity and closeness to physical situations,
and we will pay special attention to the specific reasons why each of them
is not included in the existing theorems. Having thus established clearly the
existence of phase transitions in 1D systems with short range interactions,
we move to our second contribution, introducing rigorously a very general
theorem on the impossibility of phase transitions in such models. As we
will see, the theorem, which includes van Hove’s and Ruelle’s results as
particular cases, gives sufficient but not necessary conditions to forbid
phase transitions. We will also show how models not fulfilling one of the
hypotheses exist which do have phase transitions and comment on the ways
to violate those hypotheses. Finally, we conclude the paper with a discus-
sion focused on the physics underlying the mathematical results presented.

2. VAN HOVE'S THEOREM

When one encounters the sentence “1D systems with short range
interactions can not have phase transitions” in the literature, it is either
considered public knowledge and not supported by a quotation, or else is
directly or indirectly referred to a 1950 paper by van Hove, written in
French.® Indeed, the above statement often receives the name “van Hove’s
theorem.” However, there is nothing that general in the excellent work by
van Hove, nor does he intend to mean it in his writing. It is very illuminat-
ing to quote the English abstract here:

“The free energy of a one-dimensional system of particles is calculated for the
case of non-vanishing incompressibility radius of the particles and a finite range of
the forces. It is shown quite generally that no phase transition phenomena can

occur under these circumstances. The method used is the reduction of the problem
to an eigenvalue problem.”

Let us expand some more on the abstract, in order to understand
exactly what van Hove proved. He considered a system of N identical
particles, lying on a segment of length L on positions x;, i=1,..., N,
0 < x; < L. The potential energy of the system is given by

N
V= z U(|xi_xj|)’ ¢))
i=1,i<j
with
+ 00, if 0<E<d,,
U&= . ’ 2
0, if &x=d,,
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and 0 <d, <d,. We are thus faced with a system of hard-core segments
of diameter d,, that interact only at distances smaller than d,; van Hove’s
remaining assumption about the interaction is that U is a continuous,
bounded below function.

The way he proves this result is, as he himself says, by reducing the
problem to an eigenvalue problem. He is able to write the partition func-
tion of the system in terms of a transfer operator, whose largest eigenvalue
gives the only relevant contribution to the free energy in the thermo-
dynamic limit. After transforming the operator into a more useful form,
van Hove resorts to the theory of Fredholm integral operators and other
theorems of functional analysis to show that this eigenvalue is an analytic
function of temperature and, consequently, that the system can not have
phase transitions, understood rigorously as nonanalyticities of the free
energy. The mathematical basis of this result will be made clear by the
theorem we will present later in this article, and therefore we do not need
to go into further detail at this point (other than enthusiastically referring
the interested reader to the original paper®). For the time being, suffice it
to say that the basic idea is an extension of the well-known Perron—Frobenius
theorem for non-negative matrices; ! '? we will come back to this theorem
when discussing our first example in the next section.

The key point we want to make here relates to the hypotheses needed
to prove van Hove’s theorem, i.e., to the class of systems to which it applies.
Let us consider them separately:

Homogeneity. First of all, the system has to be perfectly homoge-
neous, made up of identical particles. This automatically excludes any
inhomogeneous model, where inhomogeneous means either aperiodic or
disordered. Periodic systems could in principle be included in the frame of
van Hove’s theorem by analyzing the transfer operator for a unit cell. This
is a very strong restriction, and it should be very clear that any degree of
inhomogeneity in the system makes it impossible to exclude phase transi-
tions on the ground of van Hove’s result.

No External Fields. van Hove’s choice for the potential energy does
not include terms depending on the position of the particles x; alone, i.e.,
they only depend on relative interparticle distances. The simplest way to
have those terms in the potential is by introducing external fields. With
such an addition the model does not satisfy the hypothesis of van Hove’s
theorem and might therefore have phase transitions.

Hard-core Particles. We do not need to insist much on the finite
range of the interaction potential, as this is almost always included in any
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statement about the impossibility of phase transitions in 1D systems. It is
much less known, however, that the validity of van Hove’s result requires a
hard core potential as well, meaning that it does not apply to point-like or
soft particles.

Of these three conditions, the theorem we will introduce below will
relax very much the second and third restrictions, although we will also
present counterexamples showing that the theorem cannot be extended to
include any external field. Our work leaves open the question as to the
types of external fields that may give rise to a phase transition. As for the
first condition, however, we will say nothing about the inhomogeneous
case. This is a much more complicated question, far beyond the scope of
the present work, and that is why we want to stress here that there is no
known theorem forbidding phase transitions in 1D inhomogeneous systems.
As a matter of fact, their existence is largely acknowledged within the com-
munity working on the so called “2D wetting” on disordered substrates,!®
a phenomenon described by inhomogeneous 1D models.

To conclude this section, a comment is in order about extensions and
generalizations of van Hove’s theorem. The most relevant one is due to
Ruelle,®'¥ who proved the lattice version of the theorem under the same
basic hypotheses (earlier, Rushbrooke and Ursell proved it for the lattice
gas with finite neighbor interaction’®). As for the finite range of the
interactions, the work of Ruelle"® and Dyson® proved that pair interac-
tions decaying as 1/r? (r being the distance between variables) represent the
boundary between models with and without phase transitions. Subsequently,
Frohlich and Spencer!” showed that case 1/r* was to be included in those
with phase transitions. We do not know of further results in this direction,
and therefore this is as much as can be safely said about systems having or
not having phase transitions in 1D.

3. EXAMPLES OF 1D MODELS WITH PHASE TRANSITIONS

After reviewing the available results about non-existence of phase
transitions in 1D systems with short-range interactions, we now present
some selected examples where there indeed are true thermodynamic phase
transitions in spite of their 1D character and the range of their interactions.
We proceed in order of difficulty, and try to cover the three main levels of
transfer operators: finite matrices, infinite matrices and integral operators.
Our first example is actually very simple, and will allow us to review the
transfer matrix formalism. Both this one and the second model are exactly
solvable, and will make it clear that phase transitions are certainly possible.
The third model can be written in terms of a transfer operator as well, but
the corresponding eigenvalue problem can only be solved numerically.
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3.1. Kittel’s Model
3.1.1. Model Definition

The first system we consider was proposed by Kittel in 1969,"® and is
closely related to another one introduced by Nagle a year earlier’® as a
simple model of KH,PO, (usually known as KDP), which exhibits a first-
order phase transition as well. Incidentally, both papers were published in
American Journal of Physics, which points to the very pedagogical charac-
ter of these models. Kittel’s model is in fact a single-ended zipper model,
discussed ““as a good way to introduce a biophysics example into a course
on statistical physics,” and inspired in double-ended zipper models of
polypeptide or DNA molecules.

Kittel’s model is as follows. Let us consider a zipper of N links that
can be opened only from one end. If links 1, 2,..., n are all open, the energy
required to open link n+1 is €; however, if not all the preceding links are
open, the energy required to open link #+1 is infinite. Link N cannot be
opened, and the zipper is said to be open when the first N —1 links are.
Further, we suppose that there are G orientations which each open link can
assume, i.e., the open state of a link is G-fold degenerated. As we will see
below, there is no phase transition if G =1, whereas for larger degeneracy
a phase transition arises. In ref. 18 the partition function is expressed as a
geometric sum which can be immediately obtained, and subsequently all
the magnitudes of interest can be calculated as well. Nevertheless, in order
to introduce the context of this work, namely the transfer operator for-
malism, we will solve Kittel’s model in terms of a transfer matrix (Kittel’s
way is much simpler, see ref. 18, but it is not a general procedure). To this
end, let us write the model Hamiltonian as

N-1

Hy =€e(1=0,,0)+ ). (€+V4d,,_, o)1=, o) (€)

where s; =0 means that link i is closed, s; =1, 2,..., G means that the link
is open in one of the possible G states, and J, , is the Kronecker symbol.
Note that Kittel’s constraint on the zipper corresponds to the choice
V, = o0, and that we have also imposed the boundary condition s, = 0 (the
rightmost end of the zipper is always closed). The partition function will
then be given by

Zy = Z exp(— BHy), C))

config.

with = 1/k,T being the inverse temperature and where the sum is to be
understood over all configurations of the variables s;, i =1,..., N—1.
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3.1.2. Transfer Matrix Solution

The transfer matrix formalism to compute the partition function is a
well-known technique in equilibrium Statistical Mechanics that can be
found in most textbooks (see, e.g., refs. 20—22). To implement this proce-
dure, we rewrite the partition function as

N-2
Zy= 3, e [ e Mt 14 (e M=1) 3, 4(1=0,, )] ()

config. i=1

From now on, we follow Kittel and let ¥, =oco, which implies that
e ™0 = 0. We introduce the transfer matrix T = (z, ), defined as

ts,s' = eiﬂE(li(ssl'O)[l _6.9,0(1 _5s',0)]s (6)

orin (G+1) x (G+1) matrix form

1 0 0
1 a .. a

T=|. . s @)
1 a a

where a = e #. It is very important to realize that the constraint that link
s;4+1 cannot be open (cannot take the values 1, 2,..., 6) if link s; is closed
(s; = 0) yields the null entries in the first row of T.

The partition function can thus be recast in the form

1
1
=0 a - a)T" 2| _|. ®)
1
Matrix T has three different eigenvalues, namely A, =Ga, 1, =1, and

Ay =0 (with multiplicity G—1). The eigenvectors of the two nonzero
eigenvalues are, respectively,

0 1—-Ga

1
v = - vV, = . > ®
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so, if we express

1 1
a a(l—Ga)—1 1 1 —Ga 1
: —6a "T1=Ga"™ |: | 1=¢a"t1=Ga" 10
a 1
we arrive finally at
1—(Ga)" 1—(Ge PN
= = 11
I =1 _Ga 1—Ge ™" (an
in agreement with Kittel’s result® or, alternatively,
Fym (AN (12)
M7 1—Ge Pt 7T

which is more suitable to our purposes, and shows the general structure of
transfer matrix results: the partition function is expressed as a linear com-
bination of Nth powers of the transfer matrix eigenvalues. In the thermo-
dynamic limit, only the contribution of the largest eigenvalue remains, and
we have, as N — oo, that the free energy is given by

1 1 1
f= Ng; = _ﬁ_Nln Py = —E In max(4,, 4,). 13)

We are thus faced with the crux of the matter: in order to have a phase
transition, meaning a nonanalyticity of the free energy—given that the
eigenvalues are positive, analytic functions of f—we need two eigenvalues
to cross at a certain f,. In our problem, we only have to compare 1, and 4,
to find that they cross at a temperature given by S, =In G/e, or, equiva-
lently, T, = kze/In G; above (below) T, A, (4,) is the largest eigenvalue (see
Fig. 1). At T,, the derivative of the free energy is discontinuous marking the
existence of a phase transition. It is interesting to note that T, = kze/In G is
finite as long as G > 1; for the non-degenerate case G =1 (only one open
state) the transition takes place at 7= oo or, in other words, there is no
phase transition.

3.1.3. Discussion

We are now in a position to explain in more detail the mathematical
reasons underlying these results as well as, generally speaking, van Hove’s
theorem on the absence of phase transitions. In the preceding section we
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Fig. 1. Largest eigenvalue of the transfer matrix for Kittel’s model with G =2 vs inverse
temperature, with € = 1. Note the nonanalyticity at # =1/In 2.

mentioned that van Hove’s theorem relies on an extension of the Perron—
Frobenius theorem for matrices to integral operators; however, for our
discussion of Kittel’s model, we need only the original result by Perron and
Frobenius: !!-»

Theorem 1 (Perron-Frobenius). Let A be a non-negative (all its
elements are non-negative), irreducible matrix; then its spectral radius
(maximum eigenvalue) p(A) > 0 is an eigenvalue of algebraic multiplicity
one.

A matrix A is irreducible if there does not exist a permutation matrix P

such that
X Y
P‘AP = (14)
0 Z

with both X and Z being square submatrices.

Let us note that this theorem is not enough for our purposes, because
we are not dealing with a specific matrix; instead, we are considering a
family of matrices depending on temperature, T(f). We also need the
following result (see ref. 23, Section II.1.8), valid for matrices analytic in f
(all their elements are analytic functions of f):

Theorem 2. For every £ in a simply connected set D = C, let T(f)
be a linear operator on an n-dimensional vector space X (i.e., T(f) is an
n x n complex matrix). Assume that T(f) is analytic in D. Let X be a subset
of eigenvalues of T(f) whose number, s, remains constant for all fe D
(i.e., eigenvalue splitting does not occur). Then each eigenvalue of X' has
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constant multiplicity and can be expressed as an analytic function in D,
4i(B) (G=1,...,5).

So for a non-negative, irreducible transfer matrix T(f) whose elements
are analytic functions in a neighborhood of the positive real axis, f >0,
Theorems 1 and 2 imply that the maximum eigenvalue (hence the free
energy) is an analytic function of g, for all § > 0.

We can now turn to the reasons as to why there is a phase transition in
Kittel’s model. We stress that transfer matrices, made up from Boltzmann
factors, i.e., exponentials, are always strictly positive and, consequently, irre-
ducible and analytic in . Under these conditions there cannot be a phase
transition for any finite § > 0. Therefore, the only way we can escape the
hypothesis of the Perron—Frobenius theorem is by assigning an infinite energy
to some configurations, thus giving rise to null entries in the matrix, which
may or not then be irreducible. This is exactly the case in Kittel’s model. It is
important to realize that breaking the irreducibility hypothesis does not
ensure eigenvalue crossing: Kittel’s model transfer matrix for the non-degen-
erate case, G =1, is also reducible, and the eigenvalue crossing takes place
only at f =0, as we have already explained, yielding the analyticity of the
maximum eigenvalue (hence of the free energy) for any finite temperature.

Summarizing, Kittel’s model has allowed us to show how phase tran-
sitions can take place in 1D models whose statistical mechanics can be
computed with n x n matrices or, equivalently, in 1D lattice models with a
finite number of states per node and finite range of interactions. Due to the
nature of the transfer matrix and the theorems that apply to it, phase tran-
sitions are impossible (with the caveat about boundary conditions discussed
in Section 4.3.1) unless there are forbidden (infinite energy) configurations,
but fulfilling this condition does not necessarily induce a phase transition.
As we will now see, this clear-cut conclusion will become more and more
complicated as transfer matrices of infinite size or integral transfer opera-
tors are considered. The next two subsections will discuss briefly two such
examples before proceeding to the detailed, rigorous discussion of the cor-
responding theorems.

3.2. Chui-Weeks’'s Model

We now proceed in order of increasing mathematical complexity and
consider a model in which the transfer matrix has infinite size. The specific
example we consider was proposed by Chui and Weeks® and is given by
the following Hamiltonian:

N N
Hy=J z Ihi_hi+1|_K Z 5h,—,0' (15)

i=1 i=1
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This is a typical instance of the family of models called solid-on-solid (SOS)
for surface growth, in which 4; stands for the height above site i of the
lattice; the reason for the name SOS is that overhangs are not allowed, i.e.,
the surface profile is single-valued. We will consider that heights can take
on only integer values and that there is an impenetrable substrate, imposing
h; = 0. In this context, the first term represents the contribution of surface
tension to the total energy, and the second one introduces an energy
binding the surface to the substrate. As we will comment below, this is
crucial for the model to exhibit a phase transition. Interestingly, these
systems have often been considered as two-dimensional ones because of the
fact that they represent interfacial phenomena on a plane, and therefore
they have been considered not relevant for the 1D phase transition issue.
We stress here that the fact that A, stands for a height does not change
the 1D nature of the model, as it could equally well represent any other
magnitude or internal degree of freedom, not associated to a physical
dimension.

Instead of following Chui and Weeks’s presentation, which is very
simple but does not lead to explicit results, we resort to an alternative
derivation proposed as Exercise 5.7 in Yeomans’s textbook.*® We will not
go here into the details of the derivation and quote only its main steps.
A transfer matrix for the model is evidently

(T)ijEe—ﬁjli_j|[1+(e_ﬂK_1) 6i,0]7 l:]=1727 (16)

Note that the matrix dimension is actually infinite, as announced, and
stems from the fact that the amount of possible states (heights) at any site
of the lattice is infinite. It is also important to realize that in this case none
of the entries in the matrix is zero, so we have a strictly positive matrix,
although out of the scope of the theorems discussed above because of its
infinite dimension.

For simplicity, we introduce the notation w = e#’, k = ¢ #X. Then, by
considering eigenvectors of the form

v, = (i, cos(q+8), cos(2g+0),...), 17

it is a matter of algebra to show that there is a continuous spectrum of
eigenvalues,

(18)

a(T)=[1_w 1+a)}'

l+0’ 1—w
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The phase transition arises because, in the range of temperatures such that
x > 1/(1—w), there is an additional eigenvector,

Vo = (¢07 e_ﬂ’ e_Z”a'“) (19)
with eigenvalue

2
/10=K(1_w )2(K_1)’ 20)
k(1-—w*)—1

which, when it exists, is the largest eigenvalue. Thus, we have found again
another case of eigenvalue crossing in the transfer matrix, which indicates
the existence of a phase transition. The physics of the transition is that, for
temperatures below 7., the temperature at which x = 1/(1 —w), the surface
is bound to the substrate and henceforth is macroscopically flat; on the
contrary, above 7T, the surface becomes free and its width is unbounded.
This is an example of the so called roughening (or wetting, depending on
the context) transitions.

It is interesting to observe that, if the substrate is not impenetrable and
all integer values from — oo to oo are allowed for the variables #4;, the tran-
sition disappears, and the surface is always pinned to the line 4, = 0,@%
meaning that it is flat at all temperatures. As discussed by Chui and Weeks,
this is closely related to the fact that, in Quantum Mechanics, a potential
well always has a bound state if it is located within the infinite line
[ —o0, 00], while it needs special parameters to have a bound state if the
well is at the left side of the semi-infinite line [0, co]. This comment will be
in order later, when discussing the general theorem on the absence of phase
transitions, because we will point out that the range of definition of the
transfer operator can be crucial to suppress or to allow phase transitions.

3.3. Dauxois-Peyrard’s Model

We conclude this section on examples of phase transitions in 1D
systems with short range interactions by considering the situation in which
the model is still defined on a lattice, but the variables at the lattice sites are
real valued. In this case, the infinite transfer matrix of the previous subsec-
tion becomes an integral transfer operator, as we will see below. A good
instance of this class of problems is the extension of the model we have
just discussed to real-valued heights, studied by Burkhardt.®® A transfer
operator for Burkhardt’s model is

To(h) = L:O dh' exp[—B(J |h—K'|+; U +UHENT $(K), (21
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where U(h) is the potential well binding the surface to the substrate,
generalizing the Kronecker delta in Chui-Weeks’s model. We will not
discuss Burkhardt’s results in detail as they are qualitatively the same as in
the discrete height version, including the suppression of the phase transi-
tion by considering a doubly infinite range for 4. Let us simply point out
that, in this case, the analogy with the quantum-mechanical problem, men-
tioned at the end of the previous subsection, of the existence of bound
states in a 1D well becomes exact, as the statistical mechanical problem can
be mapped to a Schrodinger equation. We refer the interested reader to
ref. 26 for details.

In order to include examples taken from different contexts, we want to
discuss in this section a model for DNA denaturation, that, in addition, is a
much more realistic model than the toy model introduced by Kittel and
discussed in detail above. The model was proposed in ref. 27 (see ref. 28 for
recent results; see ref. 29 for a brief review on DNA denaturation models),
and we will refer to it as Dauxois—Peyrard’s model. The corresponding
Hamiltonian is

N
Hy =3, [3myy+D(e ™ =1+ W (y yo )], 22)

i=1

where the variable y, represents the transverse stretching of the hydrogen
bonds connecting the two base pairs at site #» of the double helix of DNA
(note that the molecule is supposed to be homogeneous). The first term in
the Hamiltonian is the kinetic energy, with m being the mass of the base
pairs; the second term, a Morse potential, represents not only the hydrogen
bonds between base pairs but also the repulsion between phosphate groups
and solvent effects; finally, the stacking energy between neighboring base
pairs along each of the two strands is described by the anharmonic potential

K
W(ym yn—l) =3 [1 +pe—a(y,,+y,,,1)](yn _yn—l)z' (23)

Once again, the partition function of the model can be written in terms of
an integral transfer operator, which in this case is given by [ compare with

Eq. 21)]
() =" dxexpl— B (3, 0)+3 V() +V(ODT6Gx) 24

where the upper limit in the integral, 4, is a cutoff introduced for technical
reasons, but the limit 4 — oo is well defined.
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The problem with the Dauxois—Peyrard model is that it is not possible
to solve exactly for the eigenvalues of the transfer operator. However, in
ref. 27 the combined use of analytical approximations and numerical com-
putation of the eigenvalues allowed the authors to provide compelling evi-
dence for a phase transition in the anharmonic case [a # 0 in the Hamil-
tonian (23)]. Indeed, their numerical results show, much as in the Chui-
Weeks’s model, a single eigenvalue in the discrete spectrum that merges the
band of the continuous spectrum at a finite temperature. The result agrees
very well with numerical simulations of the model, showing that above the
critical temperature the double strand denaturates (i.e., the two strands
separate to a macroscopically large distance or, equivalently, the mean
value of y, diverges), whereas below the critical temperature the two strands
remain bound. Most interestingly, the predictions of the model compare
very well with experiments on short chains.®” The authors claim® that
van Hove’s theorem does not apply here, among other reasons, because
of the presence of the external field term given by the Morse potential.
Actually, we want to go beyond their claim and stress that van Hove’s
theorem has nothing to do with this model, because it does not fulfill other
hypotheses as well (although, admittedly, the most noticeable violation is
the external potential, which breaks the required translation invariance).
Therefore, this phase transition should not be discussed in the framework
of van Hove’s theorem: As we will see in the next section, the transfer
operator is likely to be excluded of the more general theorem we will
present, thus making it possible the existence of this phase transition.

4. A GENERAL THEOREM ON THE NON-EXISTENCE OF PHASE
TRANSITIONS

Once established the existence of phase transitions in one-dimensional
systems with finite-range interaction, we will consider the formulation of an
impossibility theorem sufficiently general as to include all known particular
cases of proven nonexistence of phase transitions (namely, the theorems of
van Hove,® Ruelle,® ¥ and Perron—Frobenius, !'? at least).

Our guideline to look for such a generalization will be the Perron—
Frobenius theorem for nonnegative matrices. This theorem applies to
homogenous lattice models in which the state variables defined on each
node take on values from a finite set (like, e.g., Ising or Potts variables) and
interact only with a finite set of neighbors. The partition function of those
models can be defined in terms of the eigenvalues of a finite nonnegative
(its elements are Boltzmann’s factors) transfer matrix, the kind of object
to which Perron—Frobenius theorem applies. But general one-dimensional
models may differ from those lattice models in at least one of two ways:
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they can be continuum models, and state variables can take values on an
infinite (either discrete or continuum) set. In these cases the partition func-
tion can be expressed in terms of a transfer operator on a certain infinite-
dimensional linear space. Integral operators or infinite matrices are two
particular instances of such operators, but they are not the only ones.

The problem to generalize Perron-Frobenius theorem to operators
more general than finite matrices is to extend the notions of nonnegative-
ness and irreducibility. This amounts to equip functional spaces with an
order which allows comparing functions (at least in certain cases). The
theory resulting from introducing order in Banach spaces and its conse-
quences for the spectral theory of linear operators defined on them has
been a topic of active research for mathematicians for quite some time, *!3?
and it is at the heart of this realm where the desired extension is found.

4.1. Mathematical Background

Much as the proof of non-existence of phase transitions in 1D lattice
models with finite-state variables interacting through a short-range poten-
tial is based upon Perron—Frobenius theorem, that of general 1D models is
based on a generalization of that theorem to a class of transfer operators.
Such a generalization, known as Jentzsch—Perron theorem (a special case of
which was employed by van Hove to obtain his result®) reads as follows
(the present statement is a slightly simplified version of Corollary 4.2.14 on
p. 273 of ref. 31):

Theorem 3 (Jentzsch-Perron). Let E be a Banach lattice and
T #0 a linear, positive, irreducible operator in E. Assume T* is compact
for some ke N. Then its spectral radius p(T) >0 is an eigenvalue of T
with multiplicity one.

The proof of this theorem roots deeply into the theory of Banach lat-
tices. The interested reader is urged to study the specialized literature®!-?
to discover the rich structure that order induces in ordinary Banach spaces.
Instead of that, we are simply giving here the necessary clues to make this
theorem a practical tool to investigate phase transitions in models whose
partition function can be written in terms of a transfer operator.

4.1.1. Banach Lattices in a Nutshell

A vector space, E, is said to be an ordered vector space if a partial
order (<) is defined between its elements such that if f, g are elements of E,
() f <g implies f+h<g+h for any he E and (ii) f = 0 implies af >0
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for every a >0 in R (we then say that the order is compatible with the
vector space structure). If (E, <) is also a lattice (a mathematical notion
not to be confused with physical lattices), i.e., if for any f, g € E, sup{ f, g}
and inf{ f, g} are in E, then we call E a Riesz space.

In a real Riesz space it makes sense to define the absolute value of
a vector as |f|=sup{f,—f}, because a Riesz space is a lattice. The
extension of this notion to complex Riesz spaces is |f|=sup{Re( fe ™),
0 < 60 <2r} (notice that the latter definition reduces to the former one for
real elements of the Riesz space). This element, though, is not guaranteed
to belong to the Riesz space or even to exist at all.

When a Riesz space E has a norm, ||- ||, such that for f, g€ E, | f| <|g|
implies || f|| < ||g]| (i-e., compatible with the order), then E is a normed Riesz
space. If the normed Riesz space E is complete in the norm (i.e., every
Cauchy sequence converges in E or, in other words, if £ is a Banach
space), then E is called a Banach lattice. In a complex Banach lattice,
completeness ensures that |f| (see above) is always a well-defined element
of it.

Physically Relevant Examples of Banach Lattices. The most
common Banach spaces are also Banach lattices with the natural order.
For instance, [? (1<p<), the sequences x=(x,),.ny Of complex
numbers with Y, .y [x,|? < oo, ordered componentwise (i.e., for x, y € /%,
X=XD)uen> V=Vu)uen, We say that x<y if Rex,<Rey, and
Im x, <Im y,). We have the same property for spaces L?(X, u), the
complex functions on the point set X (to be precise, the classes of functions
which are equal “almost everywhere”) having jX | f1? du < co. The order
is then pointwise almost everywhere, i.e., for f,ge L?(X,u), f<g if
Re f(x) <Re g(x) and Im f(x) < Im g(x) for all x € X, except for a set of
vanishing u-measure.

4.1.2. Linear Operators on Banach Lattices

An important subset of a Riesz space is its positive cone, E, = {f € E :
f>=0}. A linear operator, T: E+ E is said to be a positive operator if
TE, c E,. Every positive operator in a Banach lattice is automatically
(norm) bounded. We say that one such linear operator is irreducible if the
only invariant ideals are {0} and E. In short, a vector subspace 4 < E is an
ideal of the Riesz space E if for any x € 4 it contains all y € E such that
|¥] < |x|. As we will show below, for some very common types of operators
there is a simpler characterization of irreducibility.

We say that T is a compact operator if it maps the unit ball ({x € E :
x| <1}) in a relatively compact set (one whose closure is a compact set)
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of E. Compact operators are the closest to finite matrices because of the
very simple structure of their spectra.®” The continuous and residual
spectra of compact operators are empty. Also, every 4 # 0 in the spectrum
is an eigenvalue of finite multiplicity. There is a finite or countable number
of eigenvalues, and if not finite, they can be arranged in a sequence (4,),.x
such that 4, - 0 as n - o0 (A =0 may or may not be itself an eigenvalue).
Thus each 1, # 0 is an isolated point in the spectrum. In general, one of the
easiest ways to prove that an operator is not compact is showing that part
of its spectrum is continuous.

Physically Relevant Examples of Linear Operators. In the Banach
lattice C” every linear operator (an nxn complex matrix) is, of course,
compact. In £* a linear operator T can be represented by an “infinite by
infinite” matrix (¢;); ;cn- A sufficient (not necessary) condition for T to be
compact is Y, ;. |t;]* <oo; or if T is of the special type that #; =0 for
|i —j| > r, for some fixed r (a 2r+ 1-diagonal operator), then a necessary
and sufficient condition for T to be compact is lim;;_,, #; =0 (i.e., every
diagonal is a null sequence).®® In L*(X, u), an integral operator (Tf)(x)
= jX t(x,y) f(y)du, with a kernel #(x, y) of the Hilbert-Schmidt type
(i.e., with {42 [¢(x, p)|> du, dp, < 00) is compact.

For these particular classes of operators there are also simpler tests of
irreducibility. In the case of C" or £, T =(t;) is reducible if and only if
there exists a finite nonempty subset 4 = N such that 3., > ;c 4 2;=0
(A° stands for the complementary set of A). Likewise, in the case of a Hilbert—
Schmidt integral operator in L*(X, u), T is reducible if and only if there
exists 4 = X with 0 < u(A4) < u(X) such that | [, |¢(x, y)|* dp, du, = 0.

4.1.3. Analyticity of the Spectrum

As in the case of finite matrices, there only remains to complete this
theorem with another one which guarantees the analyticity of the maximum
eigenvalue. Such a theorem is (from ref. 23, Section VII.1.3):

Theorem 4. For every f in a simply connected set D = C, let T(S)
be a linear operator in a closed domain of a Banach space X (hence T(f) is
a bounded operator). Assume that T(f) is analytic in D either in the strong
or in the weak convergence sense. Let 2 be any finite set of isolated eigen-
values of T(f) whose number of elements is constant in D. Then each
eigenvalue has constant multiplicity and can be expressed as an analytic
function in D, 4,(B) (j=1,..., |Z]).
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4.2. The Theorem

We are now in a position to formulate our result in precise terms. Let
us consider any statistical mechanical model whose partition function can
be expressed as

Zy = p(T(B)Y), (25

where T(f) is a transfer operator of any kind for every >0, and ¢(-) is a
real, linear functional. Typical instances of ¢ are (T ) =tr(T), or p(T) =
{f, Tg) with {-, - ) a scalar product, as in Kittel’s model [cf. Eq. (8)], etc.
Notice in passing that the partition function of every 1D model with short-
range interaction fits in Eq. (25), but not only. Models in D > 1 can also
have a partition function given by Eq. (25); the only constraint is that T
does not depend on N.

For such models we can now state the following theorem, consequence
of Theorems 3 and 4, which defines a class of models for which there is no
phase transition:

Theorem 5 (Nonexistence of Phase Transitions). Let T(f) be a
compact, positive, irreducible, linear operator on the Banach lattice E for
every f in a complex neighborhood containing f>0. Let 4,..(f) and
P....(p) be, respectively, the maximum eigenvalue of T(f) and the projec-
tor on its corresponding eigenspace. Let ¢( - ) be a real, linear functional on
the space of bounded, linear operators on E such that ¢(P,,(f))#0.
Then

1
lim 10 Zy = —In Zpur (B) (26)

N -

is an analytic function on § > 0, where Z), is given by Eq. (25).

Proof. Since T(f) is compact we know that its spectrum is purely
discrete and of the form o(T(f)) = {A,(B)},c;» where I is a finite or
countable set of indices. Zero may or not be included, and, if 7 is count-
able, the remaining eigenvalues can be sorted in such a way that 4, — 0 as
n — oo. Then

Zy =3, du(B)" (P, (). @7

nel
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Notice that if 7 is countable, the above series will be convergent for suffi-
ciently large N. By factoring 4,,,,(f) out of the series

nel /lmax(ﬁ)

where I’ is I with the index corresponding to A,,,,( ) removed. Equation (26)
simply follows from the fact that

Jlim [P(Prax(B)) +ey 1" =1 29

l N
Fy = h(B) [P () +ex . eN=Z< "“”) o(P.(B),  (29)

because @(P,..(f)) #0.

Now, T(f) fulfills the hypothesis of Theorem 3, thus 4,,,,(f) > 0 has
multiplicity one. Then taking X = {1,.,(#)} in Theorem 4 it follows that
this eigenvalue is an analytic function in >0 and the proof is com-
plete. |

4.3. Discussion

4.3.1. Boundary Conditions

Among the hypotheses of the theorem, the only one whose signifi-
cance may not be evident is (P, (f)) # 0. As stated in the proof, this is
actually needed to show that the partition function can be written in terms
of the maximum eigenvalue. Actually, the condition is related to the choice
of boundary conditions for the system. In the examples mentioned above,
@(T)=tr(T) arises from periodic boundary conditions, whereas ¢(T) =
{f, Tg) arises from fixed boundary conditions given by the two vectors f
and g. The condition is then excluding boundary conditions that would
suppress the eigenstates of the maximum eigenvalue as allowed states for
the model. Otherwise nothing can be said about the existence or not of
phase transitions and, in fact, they are possible: As an illustrative example,
consider a transfer matrix for a three-state system of the form

301 1
T=(1 5 1] (30)
11 b

This is a positive, irreducible matrix which, according to Perron—Frobenius
theorem, can not have a phase transition. However, the spectrum of this

matrix is
o(T)={b—1,} (4+b+./12—4b+b?)}. G1)
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Choosing now the boundary conditions to be given by an eigenvector
orthogonal to that of the maximum eigenvalue, (4+b+./12—4b+5b%)/2,
the hypothesis on the projector of the theorem will not be fulfilled. One can
easily check that in that particular case, as there is a crossing of the second
and third eigenvalues at b = 3, the model has a thermodynamic phase tran-
sition even if it is described by a positive, irreducible matrix. Of course, this
occurs only for those specific boundary conditions, and in general the model
will behave in the usual way. Admittedly, this is an academic example
because if matrix (30) were to represent the transfer matrix of a physical
system, both the energy of the first state and the boundary conditions
(through the corresponding eigenvectors) would be temperature dependent.
It is conceivable, though, that operators with such features could arise in
more realistic systems. In any event, it is clear that the hypothesis on the
projector is needed to prevent pathological situations like this one.

4.3.2. Previous Examples of Phase Transitions in the Context of the
Theorem

Once we have the general result on the absence of phase transitions
above, it is the time to address the issue as to the two examples of phase
transitions discussed in Sections 3.2 and 3.3, namely the Chui-Weeks’s
and the Dauxois—Peyrard’s models. The fact that they do not conform to
the type of operator in the theorem is clear in view that both operators
possess continuous spectrum, which as mentioned in Section 4.1.2, makes it
impossible for them to be compact. However, in using this mathematical
condition to show that some model is outside the range of applicability of
the theorem one must consider several subtleties:

Analytical Calculations. For the Chui-Weeks’s model, the spectrum
of the infinite transfer matrix is obtained analytically, and therefore non-
compactness is rigorously established. Nevertheless, this needs not be the
case in general. A good example is provided by the 1D sine-Gordon model,
thoroughly discussed in ref. 34 and defined by the following Hamiltonian:

H = i {%(hi_1 —h,»)2+V0[l—cos(hi)]}. (32)

From the fact that the potential term is periodic in 4, it follows by Floquet—
Bloch theorem that the spectrum of the corresponding transfer integral
operator is continuous,® which would in turn imply that the model does
not fulfill the hypothesis of the theorem and subsequently, it could exhibit
phase transitions. Note that this does not imply that it must exhibit a
phase transition: indeed, in ref. 34 it was shown that a suitable change of
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variables casts the operator in a form compatible with the theorem, thus
establishing the impossibility of phase transitions in this model (and in fact
in a much wider class). Interestingly, the same problem arises in van Hove’s
theorem;® van Hove writes first his general transfer operator in a non-
compact form, but he is able to rewrite it as a compact operator and to
prove his theorem. The difference with respect to the Chui-Weeks’s model
is that in this case it is possible to calculate the spectrum and prove that
there is actually an eigenvalue crossing. These considerations indicate that
non-compactness of the transfer operator merely excludes it from the
theorem, but is not enough to say anything definite about the possibility of
phase transitions.

Numerical Calculations. The situation is more complicated with
the Dauxois—Peyrard model, where the spectrum cannot be computed ana-
lytically, and only numerical results are available. Resorting to numerical
algorithms to study the spectrum of such an integral operator implies
several difficult issues. To begin with, there are two sources of numerical
error involved: the discretization of the integral and the truncation of the
integration range. In some cases, such as the sine-Gordon model, the latter
problem can be avoided by a change of variable, see ref. 36; however, the
former one cannot be cured. Further, when discretizing an integral opera-
tor such as the ones we are discussing here, the result is always a finite
matrix that is necessarily positive and hence irreducible: i.e., it is subject to
the Perron—Frobenius theorem and cannot have singularities in the largest
eigenvalue. Hence, all that one can see in a numerical calculation of the
spectrum of an integral operator is a possibly rapid, but anyway smooth,
change of the behavior of the largest eigenvalue. In fact, if discontinuities
are observed, they must come from the lack of precision of the computa-
tion, which leads to the vanishing of very small matrix elements that effec-
tively yield the matrix reducible. It is very important then to complete the
study of the eigenvalues with other quantities, preferably the eigenstates
themselves. A good example of such an analysis is given in refs. 27 and 28,
where the existence of a phase transition in the Dauxois—Peyrard’s model is
firmly established even if it cannot be rigorously proven.

5. CONCLUSIONS

In this paper, we have attempted to convey two main conclusions:
First, there are true thermodynamic phase transitions in one dimensional
systems with short range interactions, in spite of the widespread belief on
the opposite; and second, we have provided a very general theorem about
non-existence of those transitions. In this closing section we discuss both
conclusions and their implications.
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To be sure, the existence of phase transitions in 1D systems with short
range interactions is not a new result. In this respect, what we have done
here is to collect and present within a unified framework a few, selected
instances of such phase transitions, the earliest of which were proposed
already in the sixties. In our opinion there are two main reasons which can
explain why part of the scientific community do not believe in its existence.
The first one is the fact that, indeed, most 1D systems with short range
interaction do not undergo a phase transition (except maybe a zero or
infinite temperature). Van Hove’s rigorous result, Ruelle’s extension to
lattice models and the most common exactly solvable examples of statisti-
cal physics (Ising model, Potts model, etc.) seem to suggest this conclusion.
Landau’s argument (not a theorem, as pointed out in the introduction, and
therefore applicable to a not well defined class of models) reinforces this
point of view. So far so good because we are just describing the genesis of a
reasonable conjecture. The second reason, however, is not scientific. It has
recently been pointed out that a big deal of papers contain cites which the
authors have not read.®” This is very obvious in the case of van Hove’s
work, which you often see it cited as “‘the proof” of impossibility of phase
transitions in 1D models with short range interactions, referring to models
having little or nothing in common with the model van Hove deals with.
This has spread the belief that such a proof exists. We hope that the
present work helps to remedy this situation by tracing a neat boundary
between the 1D systems about which it can be actually proved that there is
no phase transition and those about which nothing can be said.

A second point that we want to stress is that, even if we have discussed
just three basic examples, there are many more (and there will surely be
more to come). It is important to realize that whereas Kittel’s model is
largely academic, Chui-Weeks’s and Dauxois—Peyrard’s models are rele-
vant in physical situations of the importance of surface growth/wetting
and DNA denaturation, respectively. This means that they cannot be dis-
regarded as ““academic, non realistic systems” and that phase transitions
in 1D problems must be considered in their own right. Furthermore, the
examples we have discussed represent three different stages in complexity
of the model description in terms of transfer operators: finite matrices,
infinite matrices, and integral operators. However, there are transfer
operators that do not belong in any of these classes, such as the ones
defined through the evolution of dynamical systems.®® These are in prin-
ciple much more difficult to tackle, but on the other hand they open new
fields to the study of 1D phase transitions.

Moving now to the other result of the paper, the theorem presented
here is a very general result about non-existence of phase transitions in 1D,
short-ranged systems, and hence it constitutes the chief original contribution
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of this work. Improving on the starting point of van Hove’s theorem, we
have proven a rigorous result valid for any system whose partition function
can be written in terms of a transfer operator independent on the system
size. We want to emphasize this formulation because it goes beyond the
dimensionality of the models, although we could as well define 1D models
as those whose transfer operator does not depend on the size. In any event,
the theorem presented here applies to a much wider class of problems than
the original van Hove’s theorem, as we have removed two of its main three
limitations discussed in Section 2: our result is valid for point-like particles
and in the presence of external fields.

Notwithstanding the considerations above on the virtues of the
theorem we have proven, it is most important to realize that it is not the
final answer to this issue yet. One direction in which much work is needed
is to turn this result into an ‘““if-and-only-if ” theorem. Clearly, this is a very
ambitious goal and, in addition, it might not even be reachable. In fact, the
present result gives already some hints that this is the case. Indeed, com-
pactness is needed to show that there cannot be phase transitions in 1D
systems, but its absence does not imply anything, as there are models with
non-compact transfer operators with (Dauxois—Peyrard) and without (sine-
Gordon) phase transition. It can be argued at this point that the latter case
can finally be rewritten as a compact operator, but then the question arises
as to what is the class of “apparent non-compact” operators, i.e., non-
compact operators that can be recast as compact. This is obviously not an
easy question. In this respect, it is interesting to note that in the theory of
dynamical systems a more general class of transfer operators arises (quasi-
compact operators), whose spectral properties also allow to show the
impossibility of phase transitions (whatever this means for a dynamical
system). However, showing that an operator is quasi-compact without
resorting to determine its spectrum is far more difficult than the already
difficult task of proving compactness, and we know of no instance of an
equilibrium statistical-mechanical 1D system described by one such opera-
tor. The reader interested in this generalization can consult refs. 39 and 40.
As for positiveness, we face the same kind of problems: Kittel’s model with
non-degenerate open states is described by a non-positive, reducible 2 x 2
matrix which does not have a phase transition (rather, the transition tem-
perature is infinite). It appears then that if an “if-and-only-if” version of
the theorem exists, it will need much refinement of the present hypotheses.

Another comment that stems from the discussion in the previous para-
graph is that the theorem, being general and with clear-cut hypotheses, is
not very easy to apply. The case of systems with a finite number of states
per site is well dealt with, and the consequence of Perron—Frobenius
theorem is that forbidden energy configurations are necessary in order to
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have a 1D phase transition in that case; otherwise, the corresponding finite
matrix is always within the theorem applicability irrespective of any other
ingredient of the model. However, as the complication of transfer operators
increases, it becomes more and more difficult to show whether or not they
verify the hypotheses of the theorem. Among the three basic conditions,
namely positiveness, irreducibility, and compactness, the case for the first
two is again simpler, as in general irreducibility needs non-positivity and
this is usually linked to the existence of configurations with infinite energy.
The problem arises with compactness, as, aside from the simplest opera-
tors, it is not a trivial task either to prove or to disprove it. As we have
discussed in Sections 4.1.2 and 4.3.2, the spectrum of the operator may be
of help, but it does not provide a general tool. This is then the key point in
characterizing operators to check for the possibility of phase transitions.

Finally, it must be borne in mind that all the results and discussion in
this paper relate to homogeneous systems. Of the three conditions for van
Hove’s theorem to apply mentioned above, this is the only one we have not
been able to remove, as the study of non-homogeneous systems involves
stupendous mathematical difficulties. At the level of systems with a finite
number of states per site, the theory of random matrices might shed some
light on the problem, although we have not been able to find guidance to
this end among the available results. For more complex systems, with infi-
nite matrices or integrals as transfer operators, this is a largely unknown
territory. We referred in Section 2 to examples of true phase transitions in
specific disordered systems'® which grant that the problem is an interest-
ing, physically relevant one, albeit one that needs much more effort.

ACKNOWLEDGMENTS

We want to thank Maria Jos¢ Mufioz Bouzo for her invaluable
assessment in the mathematics of Banach lattices. We also want to thank
Saul Ares, Charles Doering, Michel Peyrard, Maxi San Miguel, Raul
Toral, and Chris van den Broeck for helpful discussions on the physical
implications of these results. A preliminary report of this work was pre-
sented at the FisEs '02 meeting in Tarragona, Spain, and we benefited
greatly from interactions with quite a few of the participants. This work
has been supported by the Ministerio de Ciencia y Tecnologia of Spain
through Grants BFM2000-0004 (JAC) and BFM2000-0006 (AS).

REFERENCES

1. E. H. Lieb and D. C. Mattis, Mathematical Physics in One Dimension (Academic Press,
London, 1966).
2. J. Bernasconi and T. Schneider, Physics in One Dimension (Springer, Berlin, 1981).



Phase Transitions in Short-Ranged 1D Systems 893

0NN L AW

Nl

10
11
12

13.

14.
15.
16.
17.
18.
19.
20.

21.
22.

23.
24.
25.

26.
27.

28.

29.
30.
31.
32.
33.

34.
35.
36.
37.
38.

39.
40.

. D. H. Dunlap, H. L. Wu, and P. Phillips, Phys. Rev. Lett. 65:88 (1990).

. F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81:3735 (1998).

. P. Carpena, P. Bernaola-Galvan, P. C. Ivanov, and H. E. Stanley, Nature 418:955 (2002).

. P. Carpena, P. Bernaola-Galvan, P. C. Ivanov, and H. E. Stanley, Nature 421:764 (2003).

. M. R. Evans, Brazilian J. Phys. 30:42 (2000).

. L. van Hove, Physica 16:137 (1950) (reprinted in ref. 1, p. 28).

. D. Ruelle, Statistical Mechanics: Rigorous Results (Addison-Wesley, Reading, 1989).

. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon, New York, 1980).
. C. D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, Philadelphia, 2000).

. R A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge,
1985).

G. Forgacs, J. M. Luck, T. M. Nieuwenhuizen, and H. Orland, Phys. Rev. Lett. 57:2184
(1986); B. Derrida, V. Hakim, and J. Vannimenus, J. Stat. Phys. 66:1189 (1992);
G. Giguliarelli and A. L. Stella, Phys. Rev. E 53:5035 (1996); P. S. Swain and A. O. Parry,
J. Phys. A 30:4597 (1997); T. W. Burkhardt, J. Phys. A 31:L549 (1998).

D. Ruelle, Comm. Math. Phys. 9:267 (1968).

G. Rushbrooke and H. Ursell, Proc. Cambridge Phil. Soc. 44:263 (1948).

F.J. Dyson, Comm. Math. Phys. 12:91 (1969).

J. Frohlich and T. Spencer, Comm. Math. Phys. 81:87 (1982).

C. Kittel, Am. J. Phys. 37:917 (1969).

J. F. Nagle, Am. J. Phys. 36:1114 (1968).

H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univer-
sity Press, Oxford, 1971).

K. Huang, Statistical Mechanics (Wiley, Singapore, 1987).

M. Plischke and B. Bergersen, Equilibrium Statistical Physics (World Scientific, Singapore,
1994).

T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995).

S. T. Chui and J. D. Weeks, Phys. Rev. B 23:2438 (1981).

J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press,
Oxford, 1992).

T. W. Burkhardt, J. Phys. A 14:1L63 (1981).

T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47:R44 (1993); T. Dauxois and
M. Peyrard, Phys. Rev. E 51:4027 (1995).

N. Theodorakopoulos, T. Dauxois, and M. Peyrard, Phys. Rev. Lett. 85:6 (2000);
T. Dauxois, N. Theodorakopoulos, and M. Peyrard, J. Stat. Phys. 107:869 (2002).

N. Theodorakopoulos, http: //arxiv.org/abs/cond-mat/0210188 (2002).

A. Campa and A. Giansanti, Phys. Rev. E 68:3585 (1998).

P. Meyer-Nieberg, Banach Lattices (Springer, Berlin, 1991).

A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer, Berlin, 1997).

N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Dover,
New York, 1993).

J. A. Cuesta and A. Sanchez, J. Phys. A 35:2373 (2002).

T. Tsuzuki and K. Sasaki, Progr. Theoret. Phys. Supp. 94:73 (1988).

S. Ares, J. A. Cuesta, A. Sanchez, and R. Toral, Phys. Rev. E 67:046108 (2003).

M. V. Simkin and V. P. Roychowdhury, Complex Sys. 14:269 (2003).

C. Beck and F. Schlogl, Thermodynamics of Chaotic Systems: An Introduction (Cambridge
University, Cambridge, 1993), Chapter 21.

D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, 1978).

V. Baladi, Positive Transfer Operators and Decay of Correlations (World Scientific,
Singapore, 2000).



	1. INTRODUCTION
	2. VAN HOVES THEOREM
	3. EXAMPLES OF 1D MODELS WITH PHASE TRANSITIONS
	4. A GENERAL THEOREM ON THE NON-EXISTENCE OF PHASE TRANSITIONS
	5. CONCLUSIONS
	ACKNOWLEDGMENTS

